Sitemap

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Pages

Posts

Blog Post number 4

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 3

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 2

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 1

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

portfolio

publications

Method for the production of high internal phase emulsion foams

Published in US Patent, 2017

In this patent we describe the production of poly-(high internal phase emulsion) foams in the form of fibers, which may be applied to the design of highly absortent fibrous materials.

Recommended citation: Foudazi, R., Bezik, C., Feke, D. L., Manas-Zloczower, I., Merrigan, S. R., & Rowan, S. J. (2017). METHOD FOR THE PRODUCTION OF HIGH INTERNAL PHASE EMULSION FOAMS. http://cbezik.github.io/codybezik.github.io/files/patent.pdf

SSAGES: Software Suite for Advanced General Ensemble Simulations

Published in The Journal of Chemical Physics, 2018

This paper introduces a free energy sampling package implemented in C++ which integrates with any molecular dynamics engine to provide easy access to advanced methods to any user familiar with molecular simulations. More information is available at the MICCOM codes site.

Recommended citation: Sidky, H., Colón, Y. J., Helfferich, J., Sikora, B. J., Bezik, C., Chu, W., … de Pablo, J. J. (2018). SSAGES: Software Suite for Advanced General Ensemble Simulations. The Journal of Chemical Physics, 148(4), 044104. https://doi.org/10.1063/1.5008853 http://cbezik.github.io/codybezik.github.io/files/sidky.pdf

Studying the effects of chemistry and geometry on DSA hole-shrink process in three dimensions

Published in Emerging Patterning Technologies 2018, 2018

My contributions to this paper include simulations of block copolymer directed self-assembly in the "hole-shrink" process, demonstrating that our coarse-grained simulations predict the same morphologies observed through direct imaging of 3D structures from experiments.

Recommended citation: Zhou, C., Kurosawa, T., Dazai, T., Doise, J., Ren, J., Bezik, C., … Nealey, P. F. (2018). Studying the effects of chemistry and geometry on DSA hole-shrink process in three dimensions. In E. M. Panning & M. I. Sanchez (Eds.), Emerging Patterning Technologies 2018 (p. 19). SPIE. https://doi.org/10.1117/12.2297461 http://cbezik.github.io/codybezik.github.io/files/zhou.pdf

Mechanisms of Directed Self-Assembly in Cylindrical Hole Confinements

Published in Macromolecules, 2018

This paper uses the string method to investigate the mechanism of the formation of through film cylindrical morphologies in cylindrical confinements during block copolymer directed self-assembly. We find that the assembly process most critically depends on the interaction between the polymer and the confinement sidewall.

Recommended citation: Bezik, C. T., Garner, G. P., & de Pablo, J. J. (2018). Mechanisms of Directed Self-Assembly in Cylindrical Hole Confinements. Macromolecules, 51(7), 24182427. https://doi.org/10.1021/acs.macromol.7b02639 http://cbezik.github.io/codybezik.github.io/files/bezik.pdf

Influence of Homopolymer Addition in Templated Assembly of Cylindrical Block Copolymers

Published in ACS nano, 2019

My contributions to this paper were using Monte Carlo simulations of block copolymer self-assembly to build phase diagrams of block copolymers confined in elliptical templates. I helped demonstrate that there is a certain window of concentration of homopolymers that stabilize well-separated double cylinder structures in such confinements. My simulations also helped verify that the homopolymer preferentially segregates to certain regions of the film, lending credence to the experimental hypothesis of the mechanism of the homopolymer stabilization of a doublet structure.

Recommended citation: Doise, J., Bezik, C., Hori, M., de Pablo, J. J., & Gronheid, R. (2019). Influence of Homopolymer Addition in Templated Assembly of Cylindrical Block Copolymers. ACS Nano, acsnano.8b08382. https://doi.org/10.1021/acsnano.8b08382 http://cbezik.github.io/codybezik.github.io/files/doise.pdf

talks

Three-dimensional particle-based simulations of fluctuation-stabilized copolymer mesophases

Published:

In this talk I introduced preliminary results using molecular simulations to study the phase behavior of the bricks-and-mortar phase formed from a nonlinear block copolymers architecture (prior results can be found in https://pubs.acs.org/doi/abs/10.1021/acs.macromol.5b01210 and https://pubs.acs.org/doi/abs/10.1021/acs.macromol.7b01106); the primary innovation of our work is to use three-dimensional particle-based simulations to probe the phase diagram and dynamic properties of the mesophase.

teaching

Teaching Assistant - Thermodynamics and Statistical Mechanics

Graduate course, University of Chicago, Institute for Molecular Engineering, 2017

In this course I had a slightly expanded role from the undergraduate counterpart in 2017. In addition to grading homeworks, collaborating on writing exams, and leading recitations, I also helped design assignments and filled in for occasional lectures.

Co-Instructor - Thermodynamics and Statistical Mechanics

Undergraduate course, University of Chicago, Institute for Molecular Engineering, 2018

In this course I shared some of the responsibilities I had held the previous year (collaborating on writing exams, grading homework, holding office hours) while also adding the responsibilities of designing a short series of lectures focusing on thermodynamic cycles and processes, which I also delivered. Additionally, I helped manage the course’s graduate teaching assistant.